Quantum Computing


Quantum computing is the exploitation of collective properties of quantum states, such as superposition and entanglement, to perform computation. The devices that perform quantum computations are known as quantum computers.:I-5 They are believed to be able to solve certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science. Expansion is expected in the next few years as the field shifts toward real-world use in pharmaceutical, data security and other applications.
Quantum computing began in 1980 when physicist Paul Benioff proposed a quantum mechanical model of the Turing machine. Richard Feynman and Yuri Manin later suggested that a quantum computer had the potential to simulate things a classical computer could not feasibly do. In 1994, Peter Shor developed a quantum algorithm for factoring integers with the potential to decrypt RSA-encrypted communications. Despite ongoing experimental progress since the late 1990s, most researchers believe that "fault-tolerant quantum computing [is] still a rather distant dream." In recent years, investment in quantum computing research has increased in the public and private sectors. On 23 October 2019, Google AI, in partnership with the U.S. National Aeronautics and Space Administration (NASA), claimed to have performed a quantum computation that was infeasible on any classical computer.
There are several types of quantum computers (also known as quantum computing systems), including the quantum circuit model, quantum Turing machine, adiabatic quantum computer, one-way quantum computer, and various quantum cellular automata. The most widely used model is the quantum circuit, based on the quantum bit, or "qubit", which is somewhat analogous to the bit in classical computation. A qubit can be in a 1 or 0 quantum state, or in a superposition of the 1 and 0 states. When it is measured, however, it is always 0 or 1; the probability of either outcome depends on the qubit's quantum state immediately prior to measurement.

Efforts towards building a physical quantum computer focus on technologies such as transmons, ion traps and topological quantum computers, which aim to create high-quality qubits.:2–13 These qubits may be designed differently, depending on the full quantum computer's computing model, whether quantum logic gates, quantum annealing, or adiabatic quantum computation. There are currently a number of significant obstacles to constructing useful quantum computers. It is particularly difficult to maintain qubits' quantum states, as they suffer from quantum decoherence and state fidelity. Quantum computers therefore require error correction.

Any computational problem that can be solved by a classical computer can also be solved by a quantum computer. Conversely, any problem that can be solved by a quantum computer can also be solved by a classical computer, at least in principle given enough time. In other words, quantum computers obey the Church–Turing thesis. This means that while quantum computers provide no additional advantages over classical computers in terms of computability, quantum algorithms for certain problems have significantly lower time complexities than corresponding known classical algorithms. Notably, quantum computers are believed to be able to quickly solve certain problems that no classical computer could solve in any feasible amount of time—a feat known as "quantum supremacy." The study of the computational complexity of problems with respect to quantum computers is known as quantum complexity theory.
The prevailing model of quantum computation describes the computation in terms of a network of quantum logic gates. This model can be thought of as an abstract linear-algebraic generalization of a classical circuit. Since this circuit model obeys quantum mechanics, a quantum computer capable of efficiently running these circuits is believed to be physically realizable.

In the classical view, one entry would have a value of 1 (i.e. a 100% probability of being in this state) and all other entries would be zero. In quantum mechanics, probability vectors are generalized to density operators. This is the technically rigorous mathematical foundation for quantum logic gates, but the intermediate quantum state vector formalism is usually introduced first because it is conceptually simpler. This article focuses on the quantum state vector formalism for simplicity.

Quantum algorithms

Progress in finding quantum algorithms typically focuses on this quantum circuit model, though exceptions like the quantum adiabatic algorithm exist. Quantum algorithms can be roughly categorized by the type of speedup achieved over corresponding classical algorithms.

Quantum algorithms that offer more than a polynomial speedup over the best known classical algorithm include Shor's algorithm for factoring and the related quantum algorithms for computing discrete logarithms, solving Pell's equation, and more generally solving the hidden subgroup problem for abelian finite groups. These algorithms depend on the primitive of the quantum Fourier transform. No mathematical proof has been found that shows that an equally fast classical algorithm cannot be discovered, although this is considered unlikely. Certain oracle problems like Simon's problem and the Bernstein–Vazirani problem do give provable speedups, though this is in the quantum query model, which is a restricted model where lower bounds are much easier to prove, and doesn't necessarily translate to speedups for practical problems.

Other problems, including the simulation of quantum physical processes from chemistry and solid state physics, the approximation of certain Jones polynomials, and the quantum algorithm for linear systems of equations have quantum algorithms appearing to give super-polynomial speedups and are BQP-complete. Because these problems are BQP-complete, an equally fast classical algorithm for them would imply that no quantum algorithm gives a super-polynomial speedup, which is believed to be unlikely.

Some quantum algorithms, like Grover's algorithm and amplitude amplification, give polynomial speedups over corresponding classical algorithms. Though these algorithms give comparably modest quadratic speedup, they are widely applicable and thus give speedups for a wide range of problems. Many examples of provable quantum speedups for query problems are related to Grover's algorithm, including Brassard, Høyer, and Tapp's algorithm for finding collisions in two-to-one functions, which uses Grover's algorithm, and Farhi, Goldstone, and Gutmann's algorithm for evaluating NAND trees, which is a variant of the search problem.

Potential applications

Cryptography
A notable application of quantum computation is for attacks on cryptographic systems that are currently in use. Integer factorization, which underpins the security of public key cryptographic systems, is believed to be computationally infeasible with an ordinary computer for large integers if they are the product of few prime numbers (e.g., products of two 300-digit primes). By comparison, a quantum computer could efficiently solve this problem using Shor's algorithm to find its factors. This ability would allow a quantum computer to break many of the cryptographic systems in use today, in the sense that there would be a polynomial time (in the number of digits of the integer) algorithm for solving the problem. In particular, most of the popular public key ciphers are based on the difficulty of factoring integers or the discrete logarithm problem, both of which can be solved by Shor's algorithm. In particular, the RSA, Diffie–Hellman, and elliptic curve Diffie–Hellman algorithms could be broken. These are used to protect secure Web pages, encrypted email, and many other types of data. Breaking these would have significant ramifications for electronic privacy and security.

Identifying cryptographic systems that may be secure against quantum algorithms is an actively researched topic under the field of post-quantum cryptography. Some public-key algorithms are based on problems other than the integer factorization and discrete logarithm problems to which Shor's algorithm applies, like the McEliece cryptosystem based on a problem in coding theory. Lattice-based cryptosystems are also not known to be broken by quantum computers, and finding a polynomial time algorithm for solving the dihedral hidden subgroup problem, which would break many lattice based cryptosystems, is a well-studied open problem. It has been proven that applying Grover's algorithm to break a symmetric (secret key) algorithm by brute force requires time equal to roughly 2n/2 invocations of the underlying cryptographic algorithm, compared with roughly 2n in the classical case, meaning that symmetric key lengths are effectively halved: AES-256 would have the same security against an attack using Grover's algorithm that AES-128 has against classical brute-force search (see Key size).

Quantum cryptography could potentially fulfill some of the functions of public key cryptography. Quantum-based cryptographic systems could, therefore, be more secure than traditional systems against quantum hacking.


Machine learning
Since quantum computers can produce outputs that classical computers cannot produce efficiently, and since quantum computation is fundamentally linear algebraic, some express hope in developing quantum algorithms that can speed up machine learning tasks. For example, the quantum algorithm for linear systems of equations, or "HHL Algorithm", named after its discoverers Harrow, Hassidim, and Lloyd, is believed to provide speedup over classical counterparts. Some research groups have recently explored the use of quantum annealing hardware for training Boltzmann machines and deep neural networks.

Computational biology

In the field of computational biology, computing has played a big role in solving many biological problems. One of the well known examples would be in computational genomics and how computing has drastically reduced the time to sequence a human genome. Given how computational biology is using generic data modeling and storage, its applications to computational biology are expected to arise as well.

Quantum supremacy

John Preskill has introduced the term quantum supremacy to refer to the hypothetical speedup advantage that a quantum computer would have over a classical computer in a certain field. Google announced in 2017 that it expected to achieve quantum supremacy by the end of the year though that did not happen. IBM said in 2018 that the best classical computers will be beaten on some practical task within about five years and views the quantum supremacy test only as a potential future benchmark. Although skeptics like Gil Kalai doubt that quantum supremacy will ever be achieved, in October 2019, a Sycamore processor created in conjunction with Google AI Quantum was reported to have achieved quantum supremacy, with calculations more than 3,000,000 times as fast as those of Summit, generally considered the world's fastest computer. In December 2020, a group at USTC implemented a type of Boson sampling on 76 photons with a photonic quantum computer Jiuzhang to demonstrate quantum supremacy. The authors claim that a classical contemporary supercomputer would require a computational time of 600 million years to generate the number of samples their quantum processor can generate in 20 seconds. Bill Unruh doubted the practicality of quantum computers in a paper published back in 1994. Paul Davies argued that a 400-qubit computer would even come into conflict with the cosmological information bound implied by the holographic principle.

Comments

Popular posts from this blog

Cloud Computing

Artificial Intelligence

Digital Citizen

Edge Computing

Mobile App Development

Auto Mechanics

Teleportation