Emerging Technologies
Emerging technologies are technologies whose development, practical applications, or both are still largely unrealized, such that they are figuratively emerging into prominence from a background of nonexistence or obscurity. These technologies are generally new but also include older technologies that are still relatively undeveloped in potential, such as gene therapy (which dates to circa 1990 but even today still has large undeveloped potential). Emerging technologies are often perceived as capable of changing the status quo.
Emerging technologies are characterized by radical novelty (in application even if not in origins), relatively fast growth, coherence, prominent impact, and uncertainty and ambiguity. In other words, an emerging technology can be defined as "a radically novel and relatively fast growing technology characterised by a certain degree of coherence persisting over time and with the potential to exert a considerable impact on the socio-economic domain(s) which is observed in terms of the composition of actors, institutions and patterns of interactions among those, along with the associated knowledge production processes. Its most prominent impact, however, lies in the future and so in the emergence phase is still somewhat uncertain and ambiguous."
Emerging technologies include a variety of technologies such as educational technology, information technology, nanotechnology, biotechnology, cognitive science, robotics, and artificial intelligence.
New technological fields may result from the technological convergence of different systems evolving towards similar goals. Convergence brings previously separate technologies such as voice (and telephony features), data (and productivity applications) and video together so that they share resources and interact with each other, creating new efficiencies.
Emerging technologies are those technical innovations which represent progressive developments within a field for competitive advantage; converging technologies represent previously distinct fields which are in some way moving towards stronger inter-connection and similar goals. However, the opinion on the degree of the impact, status and economic viability of several emerging and converging technologies varies.
History of emerging technologies
In the history of technology, emerging technologies are contemporary advances and innovation in various fields of technology.
Over centuries innovative methods and new technologies are developed and opened up. Some of these technologies are due to theoretical research, and others from commercial research and development.
Technological growth includes incremental developments and disruptive technologies. An example of the former was the gradual roll-out of DVD (digital video disc) as a development intended to follow on from the previous optical technology compact disc. By contrast, disruptive technologies are those where a new method replaces the previous technology and makes it redundant, for example, the replacement of horse-drawn carriages by automobiles and other vehicles.
Emerging technology debates
Many writers, including computer scientist Bill Joy, have identified clusters of technologies that they consider critical to humanity's future. Joy warns that the technology could be used by elites for good or evil. They could use it as "good shepherds" for the rest of humanity or decide everyone else is superfluous and push for mass extinction of those made unnecessary by technology.
Advocates of the benefits of technological change typically see emerging and converging technologies as offering hope for the betterment of the human condition. Cyberphilosophers Alexander Bard and Jan Söderqvist argue in The Futurica Trilogy that while Man himself is basically constant throughout human history (genes change very slowly), all relevant change is rather a direct or indirect result of technological innovation (memes change very fast) since new ideas always emanate from technology use and not the other way around. Man should consequently be regarded as history's main constant and technology as its main variable. However, critics of the risks of technological change, and even some advocates such as transhumanist philosopher Nick Bostrom, warn that some of these technologies could pose dangers, perhaps even contribute to the extinction of humanity itself; i.e., some of them could involve existential risks.
Much ethical debate centers on issues of distributive justice in allocating access to beneficial forms of technology. Some thinkers, including environmental ethicist Bill McKibben, oppose the continuing development of advanced technology partly out of fear that its benefits will be distributed unequally in ways that could worsen the plight of the poor. By contrast, inventor Ray Kurzweil is among techno-utopians who believe that emerging and converging technologies could and will eliminate poverty and abolish suffering.
Some analysts such as Martin Ford, author of The Lights in the Tunnel: Automation, Accelerating Technology and the Economy of the Future, argue that as information technology advances, robots and other forms of automation will ultimately result in significant unemployment as machines and software begin to match and exceed the capability of workers to perform most routine jobs.
As robotics and artificial intelligence develop further, even many skilled jobs may be threatened. Technologies such as machine learning may ultimately allow computers to do many knowledge-based jobs that require significant education. This may result in substantial unemployment at all skill levels, stagnant or falling wages for most workers, and increased concentration of income and wealth as the owners of capital capture an ever-larger fraction of the economy. This in turn could lead to depressed consumer spending and economic growth as the bulk of the population lacks sufficient discretionary income to purchase the products and services produced by the economy.
Examples of emerging technologies
Artificial intelligence (AI) is the sub intelligence exhibited by machines or software, and the branch of computer science that develops machines and software with animal-like intelligence. Major AI researchers and textbooks define the field as "the study and design of intelligent agents," where an intelligent agent is a system that perceives its environment and takes actions that maximize its chances of success. John McCarthy, who coined the term in 1956, defines it as "the study of making intelligent machines".
The central functions (or goals) of AI research include reasoning, knowledge, planning, learning, natural language processing (communication), perception and the ability to move and manipulate objects. General intelligence (or "strong AI") is still among the field's long-term goals. Currently, popular approaches include deep learning, statistical methods, computational intelligence and traditional symbolic AI. There is an enormous number of tools used in AI, including versions of search and mathematical optimization, logic, methods based on probability and economics, and many others.
Chatbots is a version of a artificial intelligence. Al based chatbots transform customers experience for good and rapidly gain their popularity by interacting with users using natural dialogue. Chatbots not only allow immediate conversation on websites, social media, or instant messaging apps at any place, but they also provide customized language mimicking human speech to improve user experience and cultivate customer loyalty. Online users are now increasingly getting exposed to chatbots. However chatbot have yet to fully explore its potential. Using an online experiment (N = 242), we investigate the extent to which communicating with a stand-alone chatbot influences affective and behavioral responses compared to interactive Web sites. Several underlying mechanisms are studied, showing that enjoyment is the key mechanism explaining the positive effect of chatbots (vs. Web sites) on recommendation adherence and attitudes. Contrary to expectations, perceived anthropomorphism seems not to be particularly relevant in this comparison.
3D printing, also known as additive manufacturing, has been posited by Jeremy Rifkin and others as part of the third industrial revolution.
Combined with Internet technology, 3D printing would allow for digital blueprints of virtually any material product to be sent instantly to another person to be produced on the spot, making purchasing a product online almost instantaneous.
3D printing is also use for hospitals facilitates, it is use for Orthopedic Surgery and Traumatology is the specialty that can most benefit from the advantages of these tools. The purpose of this study is to present the results of the integration of 3D printing technology in a Department of Orthopedic Surgery and Traumatology and to identify the productive model of the point-of-care manufacturing as a paradigm of personalized medicine. Pre-operative planning is their primary use. Working and 3D printing hours, as well as the amount of 3D printing material used, vary according to the type of product or material delivered to perform the process. The most commonly used 3D printing material for manufacturing is polylactic acid, although biocompatible resin has been used to produce surgical guides.
Although this technology is still too crude to produce most products, it is rapidly developing and created a controversy in 2013 around the issue of 3D printed guns.
Gene therapy
Gene therapy was first successfully demonstrated in late 1990/early 1991 for adenosine deaminase deficiency, though the treatment was somatic – that is, did not affect the patient's germ line and thus was not heritable. This led the way to treatments for other genetic diseases and increased interest in germ line gene therapy – therapy affecting the gametes and descendants of patients.
Between September 1990 and January 2014, there were around 2,000 gene therapy trials conducted or approved.
Cancer vaccines
A cancer vaccine is a vaccine that treats existing cancer or prevents the development of cancer in certain high-risk individuals. Vaccines that treat existing cancer are known as therapeutic cancer vaccines. There are currently no vaccines able to prevent cancer in general.
On April 14, 2009, The Dendreon Corporation announced that their Phase III clinical trial of Provenge, a cancer vaccine designed to treat prostate cancer, had demonstrated an increase in survival. It received U.S. Food and Drug Administration (FDA) approval for use in the treatment of advanced prostate cancer patients on April 29, 2010. The approval of Provenge has stimulated interest in this type of therapy.
Cultured meat
Cultured meat, also called in vitro meat, clean meat, cruelty-free meat, shmeat, and test-tube meat, is an animal-flesh product that has never been part of a living animal with exception of the fetal calf serum taken from a slaughtered cow. In the 21st century, several research projects have worked on in vitro meat in the laboratory. The first in vitro beefburger, created by a Dutch team, was eaten at a demonstration for the press in London in August 2013. There remain difficulties to be overcome before in vitro meat becomes commercially available. Cultured meat is prohibitively expensive, but it is expected that the cost could be reduced to compete with that of conventionally obtained meat as technology improves. In vitro meat is also an ethical issue. Some argue that it is less objectionable than traditionally obtained meat because it doesn't involve killing and reduces the risk of animal cruelty, while others disagree with eating meat that has not developed naturally.[citation needed]
Nanotechnology
Nanotechnology (sometimes shortened to nanotech) is the manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter that occur below the given size threshold.
Robotics
Robotics is the branch of technology that deals with the design, construction, operation, and application of robots, as well as computer systems for their control, sensory feedback, and information processing. These technologies deal with automated machines that can take the place of humans in dangerous environments or manufacturing processes, or resemble humans in appearance, behavior, and/or cognition. A good example of a robot that resembles humans is Sophia, a social humanoid robot developed by Hong Kong-based company Hanson Robotics which was activated on April 19, 2015. Many of today's robots are inspired by nature contributing to the field of bio-inspired robotics.
Self-replicating 3D printer
Stem cell therapy is an intervention strategy that introduces new adult stem cells into damaged tissue in order to treat disease or injury. Many medical researchers believe that stem cell treatments have the potential to change the face of human disease and alleviate suffering. The ability of stem cells to self-renew and give rise to subsequent generations with variable degrees of differentiation capacities offers significant potential for generation of tissues that can potentially replace diseased and damaged areas in the body, with minimal risk of rejection and side effects.
Chimeric antigen receptor (CAR)-modified T cells have raised among other immunotherapies for cancer treatment, being implemented against B-cell malignancies. Despite the promising outcomes of this innovative technology, CAR-T cells are not exempt from limitations that must yet to be overcome in order to provide reliable and more efficient treatments against other types of cancer.
Distributed ledger technology
Distributed ledger or blockchain technology provides a transparent and immutable list of transactions. A wide range of uses has been proposed for where an open, decentralised database is required, ranging from supply chains to cryptocurrencies.
Smart contracts are self-executing transactions which occur when pre-defined conditions are met. The aim is to provide security that is superior to traditional contract law, and to reduce transaction costs and delays. The original idea was conceived by Nick Szabo in 1994, but remained unrealised until the development of blockchains.
Medical field advancements
With technology being faster with delivering data with cloud computing, the medical field is taking advantage of this by creating digital health records. Since doctors recently created digital health records, this can greatly improve the efficiency, the hospital can have with patients. Hospitals will improve public health by being able to share valuable information about an illness, make the workflow more smooth by doctors being able to pull up records on a patient with ease, and even lower healthcare costs by not using as much paper (Banova). With the advancement of cloud computing, information can be delivered faster for doctors to help the medical field grow.[citation needed]
Risk management
Risk management is a well-known method to face new technological challenges and stands as a win–win combination of both protective and proactive approaches, fostering the collaboration of operators, researchers, regulators, and industries for the exploitation of new markets. A considerable amount of papers in this field has been devoted to risk analysis (Washington et al. [34]), ground risk assessment by estimating the fatality rate (Dalamagkidis et al. [ 8]), or the generation of ground risk maps (Primatesta et al. [30]). Against this framework, which is further explored below in Sect. 2, the paper aims to present a tool for managing data protection risks raised by autonomous or remotely piloted operations.
Comments
https://technicalworld445.blogspot.com